Reliability improvement of a sound quality index for a vehicle HVAC system using a regression and neural network model

نویسندگان

  • Ji-Hyun Yoon
  • Jae-Eun Jeong
  • Sang-Gil Park
چکیده

The reduction of vehicle interior noise has long been the main interest of noise and vibration harshness (NVH) engineers. A driver’s perception of vehicle noise is largely affected by psychoacoustic noise characteristics and SPL. Among the various types of vehicle interior noise, the sound of the heating, ventilation, and air conditioning (HVAC) systems is a source of distraction for drivers. HVAC noise is not as loud as the overall noise level; however, it affects a driver’s subjective perception and may lead to feelings of nervousness or annoyance. Therefore, vehicle engineers work not only to reduce noise, but also to improve sound quality. In this paper, HVAC noise samples were taken frommany types of vehicles. Objective and subjective sound quality (SQ) evaluations were obtained, simple and multiple regression models were generated, and these were used with the Semantic Differential Method (SDM) to determine what characteristics trigger a ‘‘pleasant’’ response from listeners. The regression analysis produced diagnostic statistics and regression estimates. In addition, neural network (NN) models were created using three objective numerical inputs (loudness, sharpness, and roughness) of the SQ metrics and one subjective output (‘‘pleasant’’). The NN model was used primarily because human perceptions are very complex and often hard to estimate. The estimation models were compared via correlations between SQ output indices and hearing test results. Results demonstrated that the NN model is most highly correlated with SQ indices, which led to determination of suggested methods for SQ metrics prediction. 2012 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Water Quality Index Estimation Model for Aquaculture System Using Artificial Neural Network

Water Quality plays an important role in attaining a sustainable aquaculture system, its cumulative effect can make or mar the entire system. The amount of dissolved oxygen (DO) alongside other parameters such as temperature, pH, alkalinity and conductivity are often used to estimate the water quality index (WQI) in aquaculture. There exist different approaches for the estimation of the quality...

متن کامل

Monte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System

We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobsho...

متن کامل

Neural Controller Design for Suspension Systems

The main problem of vehicle vibration comes from road roughness. An active suspension systempossesses the ability to reduce acceleration of sprung mass continuously as well as to minimizesuspension deflection, which results in improvement of tire grip with the road surface. Thus, braketraction control and vehicle maneuverability can be improved consider ably .This study developeda new active su...

متن کامل

Development of An Artificial Neural Network Model for Asphalt Pavement Deterioration Using LTPP Data

Deterioration models are important and essential part of any Pavement Management System (PMS). These models are used to predict future pavement situation based on existence condition, parameters causing deterioration and implications of various maintenance and rehabilitation policies on pavement. The majority of these models are based on roughness which is one of the most important indices in p...

متن کامل

Structural Reliability: An Assessment Using a New and Efficient Two-Phase Method Based on Artificial Neural Network and a Harmony Search Algorithm

In this research, a two-phase algorithm based on the artificial neural network (ANN) and a harmony search (HS) algorithm has been developed with the aim of assessing the reliability of structures with implicit limit state functions. The proposed method involves the generation of datasets to be used specifically for training by Finite Element analysis, to establish an ANN model using a proven AN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015